Mixing Time—Experimental Determination and Applications to the Modelling of Crystallisation Phenomena
نویسندگان
چکیده
Performing optimisation and scale-up studies of crystallisation systems requires accurate and computationally efficient mathematical models. The assumption of the ideal mixing conditions in batch reactors typically produce inaccurate results while the computational expense of CFD models is still prohibitively high. Therefore, in this work, a new intermediary approach is proposed that takes into account the non-ideal mixing conditions in the reactor and requires less computational resources than full CFD simulations. Starting with the Danckwerts concept of the intensity of segregation, an analogy between its application to chemical reactions and the kinetics of the crystallisation phenomena (such as nucleation and growth) has been made. As a result, the modified kinetics expressions have been derived which incorporate the effect of non-idealities present in stirred reactors. This way, based on the experimental measurements of the mixing time using the Laser Induced Fluorescence (LIF) technique, computationally more efficient mathematical models can be developed in two ways: (1) the accurate semi-empirical correlations are available for standard mixing configurations with the most often used types of impellers, (2) CFD simulations can be utilised for estimation of the mixing time; in this case it is necessary to simulate only the mixing process. The benefits offered by the LIF experimental technique have been demonstrated and some frequent problems in its application analysed. The mixing time results for configurations with and without baffles for three types of impellers and four different rotational speeds have been presented. The false shorter mixing times in the nonbaffled configurations have been observed and this phenomena explained by the existence of two segregated zones in the reactor and confirmed by additional experiments. The precise measurements in these cases have been shown as difficult using the LIF technique, particularly for higher rpms. The experimental data has been compared to the preliminary simulation results obtained from the Smoothed Particle Hydrodynamics method and the standard k-ε turbulence model with the modest success. The shortcomings of the SPH model have been recognized and the directions for the future work discussed. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 November 2016 doi:10.20944/preprints201611.0022.v1
منابع مشابه
Fluid Dynamics in a Copper Converter: an Investigation on Mixing Phenomena in an Experimental Model
In this study, the mixing phenomena and fluid dynamics in a copper converter have been experimentally investigated using a physical model. The physical model is a 1:5 horizontal tank made of Plexiglas. The mixing phenomena have been characterized by experimentally measuring the mixing time using a tracer dispersion technique. Moreover, the effects of the air flow rate and lance submergence on t...
متن کاملExperimental observations and numerical modelling of diffusion-driven crystallisation processes.
This paper reports experimental results and modelling on the crystallisation processes induced by counter diffusion method of a precipitant agent in a lysozyme protein solution. Comparison between experimental observations and numerical simulations in the presence of convection and sedimentation and without them (suppressed using gel) provides a validation of the model. Different values of the ...
متن کاملApplication of the Avrami Theory for Wax Crystallisation of Synthetic Crude Oil
Wax crystallisation and deposition from offshore reservoirs have been causing serious problems such as plugged pipelines and reduced production flow rates. This issue is receiving more attention from the researchers and for commercial applications due to the shift in trend from using offshore production facilities to pipelines utilization. The aim of this study is the implementation of the Avra...
متن کاملMODELLING OF THE PERMEABILITY FOR COLUMNAR DENDRITE STRUCTURES DURING SOLIDIFICATION OF MUSHY ALLOYS
A numerical model has been developed for the determination of liquid flow permeability through columnar dendrite during growth. The model is inclusive two stages, first numerical evolution of the dendrite shape during growth, and second numerical determination of the interdendritic liquid permeability. Simulation results shown which solute concentration by evolution of dendrite shape could resu...
متن کاملModelling the butterfat crystallisation process
Milk fat exhibits seasonal variations in composition and properties which are undesirable for many subsequent applications. Thus techniques are sought to process dairy products in order to achieve a consistent quality. A brief introduction to milk fat presents its most important particularities, especially composition, seasonal variations, solid fat content, crystallisation and polymorphism. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016